IsotonicRegression¶
- 
class pyspark.ml.regression.IsotonicRegression(*, featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', weightCol: Optional[str] = None, isotonic: bool = True, featureIndex: int = 0)[source]¶
- Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported. - New in version 1.6.0. - Examples - >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> ir = IsotonicRegression() >>> model = ir.fit(df) >>> model.setFeaturesCol("features") IsotonicRegressionModel... >>> model.numFeatures 1 >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.transform(test0).head().prediction 0.0 >>> model.predict(test0.head().features[model.getFeatureIndex()]) 0.0 >>> model.boundaries DenseVector([0.0, 1.0]) >>> ir_path = temp_path + "/ir" >>> ir.save(ir_path) >>> ir2 = IsotonicRegression.load(ir_path) >>> ir2.getIsotonic() True >>> model_path = temp_path + "/ir_model" >>> model.save(model_path) >>> model2 = IsotonicRegressionModel.load(model_path) >>> model.boundaries == model2.boundaries True >>> model.predictions == model2.predictions True >>> model.transform(test0).take(1) == model2.transform(test0).take(1) True - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of featureIndex or its default value. - Gets the value of featuresCol or its default value. - Gets the value of isotonic or its default value. - Gets the value of labelCol or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setFeatureIndex(value)- Sets the value of - featureIndex.- setFeaturesCol(value)- Sets the value of - featuresCol.- setIsotonic(value)- Sets the value of - isotonic.- setLabelCol(value)- Sets the value of - labelCol.- setParams(*[, featuresCol, labelCol, …])- setParams(self, *, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, weightCol=None, isotonic=True, featureIndex=0): Set the params for IsotonicRegression. - setPredictionCol(value)- Sets the value of - predictionCol.- setWeightCol(value)- Sets the value of - weightCol.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getFeatureIndex() → int¶
- Gets the value of featureIndex or its default value. 
 - 
getFeaturesCol() → str¶
- Gets the value of featuresCol or its default value. 
 - 
getIsotonic() → bool¶
- Gets the value of isotonic or its default value. 
 - 
getLabelCol() → str¶
- Gets the value of labelCol or its default value. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getPredictionCol() → str¶
- Gets the value of predictionCol or its default value. 
 - 
getWeightCol() → str¶
- Gets the value of weightCol or its default value. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setFeatureIndex(value: int) → pyspark.ml.regression.IsotonicRegression[source]¶
- Sets the value of - featureIndex.
 - 
setFeaturesCol(value: str) → pyspark.ml.regression.IsotonicRegression[source]¶
- Sets the value of - featuresCol.- New in version 1.6.0. 
 - 
setIsotonic(value: bool) → pyspark.ml.regression.IsotonicRegression[source]¶
- Sets the value of - isotonic.
 - 
setLabelCol(value: str) → pyspark.ml.regression.IsotonicRegression[source]¶
- Sets the value of - labelCol.- New in version 1.6.0. 
 - 
setParams(*, featuresCol: str = 'features', labelCol: str = 'label', predictionCol: str = 'prediction', weightCol: Optional[str] = None, isotonic: bool = True, featureIndex: int = 0) → pyspark.ml.regression.IsotonicRegression[source]¶
- setParams(self, *, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, weightCol=None, isotonic=True, featureIndex=0): Set the params for IsotonicRegression. 
 - 
setPredictionCol(value: str) → pyspark.ml.regression.IsotonicRegression[source]¶
- Sets the value of - predictionCol.- New in version 1.6.0. 
 - 
setWeightCol(value: str) → pyspark.ml.regression.IsotonicRegression[source]¶
- Sets the value of - weightCol.- New in version 1.6.0. 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
featureIndex= Param(parent='undefined', name='featureIndex', doc='The index of the feature if featuresCol is a vector column, no effect otherwise.')¶
 - 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
 - 
isotonic= Param(parent='undefined', name='isotonic', doc='whether the output sequence should be isotonic/increasing (true) orantitonic/decreasing (false).')¶
 - 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
 - 
weightCol= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
 
-