Merges two data frames
merge.RdMerges two data frames
Arguments
- x
- the first data frame to be joined. 
- y
- the second data frame to be joined. 
- ...
- additional argument(s) passed to the method. 
- by
- a character vector specifying the join columns. If by is not specified, the common column names in - xand- ywill be used. If by or both by.x and by.y are explicitly set to NULL or of length 0, the Cartesian Product of x and y will be returned.
- by.x
- a character vector specifying the joining columns for x. 
- by.y
- a character vector specifying the joining columns for y. 
- all
- a boolean value setting - all.xand- all.yif any of them are unset.
- all.x
- a boolean value indicating whether all the rows in x should be including in the join. 
- all.y
- a boolean value indicating whether all the rows in y should be including in the join. 
- sort
- a logical argument indicating whether the resulting columns should be sorted. 
- suffixes
- a string vector of length 2 used to make colnames of - xand- yunique. The first element is appended to each colname of- x. The second element is appended to each colname of- y.
Details
If all.x and all.y are set to FALSE, a natural join will be returned. If all.x is set to TRUE and all.y is set to FALSE, a left outer join will be returned. If all.x is set to FALSE and all.y is set to TRUE, a right outer join will be returned. If all.x and all.y are set to TRUE, a full outer join will be returned.
See also
Other SparkDataFrame functions:
SparkDataFrame-class,
agg(),
alias(),
arrange(),
as.data.frame(),
attach,SparkDataFrame-method,
broadcast(),
cache(),
checkpoint(),
coalesce(),
collect(),
colnames(),
coltypes(),
createOrReplaceTempView(),
crossJoin(),
cube(),
dapply(),
dapplyCollect(),
describe(),
dim(),
distinct(),
drop(),
dropDuplicates(),
dropna(),
dtypes(),
except(),
exceptAll(),
explain(),
filter(),
first(),
gapply(),
gapplyCollect(),
getNumPartitions(),
group_by(),
head(),
hint(),
histogram(),
insertInto(),
intersect(),
intersectAll(),
isLocal(),
isStreaming(),
join(),
limit(),
localCheckpoint(),
mutate(),
ncol(),
nrow(),
persist(),
printSchema(),
randomSplit(),
rbind(),
rename(),
repartition(),
repartitionByRange(),
rollup(),
sample(),
saveAsTable(),
schema(),
select(),
selectExpr(),
show(),
showDF(),
storageLevel(),
str(),
subset(),
summary(),
take(),
toJSON(),
union(),
unionAll(),
unionByName(),
unpersist(),
unpivot(),
with(),
withColumn(),
withWatermark(),
write.df(),
write.jdbc(),
write.json(),
write.orc(),
write.parquet(),
write.stream(),
write.text()
Examples
if (FALSE) { # \dontrun{
sparkR.session()
df1 <- read.json(path)
df2 <- read.json(path2)
merge(df1, df2) # Performs an inner join by common columns
merge(df1, df2, by = "col1") # Performs an inner join based on expression
merge(df1, df2, by.x = "col1", by.y = "col2", all.y = TRUE)
merge(df1, df2, by.x = "col1", by.y = "col2", all.x = TRUE)
merge(df1, df2, by.x = "col1", by.y = "col2", all.x = TRUE, all.y = TRUE)
merge(df1, df2, by.x = "col1", by.y = "col2", all = TRUE, sort = FALSE)
merge(df1, df2, by = "col1", all = TRUE, suffixes = c("-X", "-Y"))
merge(df1, df2, by = NULL) # Performs a Cartesian join
} # }