|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
Objectorg.apache.spark.graphx.lib.PageRank
public class PageRank
PageRank algorithm implementation. There are two implementations of PageRank implemented.
The first implementation uses the standalone Graph interface and runs PageRank
for a fixed number of iterations:
var PR = Array.fill(n)( 1.0 )
val oldPR = Array.fill(n)( 1.0 )
for( iter <- 0 until numIter ) {
swap(oldPR, PR)
for( i <- 0 until n ) {
PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
}
}
The second implementation uses the Pregel interface and runs PageRank until
convergence:
var PR = Array.fill(n)( 1.0 )
val oldPR = Array.fill(n)( 0.0 )
while( max(abs(PR - oldPr)) > tol ) {
swap(oldPR, PR)
for( i <- 0 until n if abs(PR[i] - oldPR[i]) > tol ) {
PR[i] = alpha + (1 - \alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
}
}
alpha is the random reset probability (typically 0.15), inNbrs[i] is the set of
neighbors whick link to i and outDeg[j] is the out degree of vertex j.
Note that this is not the "normalized" PageRank and as a consequence pages that have no inlinks will have a PageRank of alpha.
| Constructor Summary | |
|---|---|
PageRank()
|
|
| Method Summary | ||
|---|---|---|
static
|
run(Graph<VD,ED> graph,
int numIter,
double resetProb,
scala.reflect.ClassTag<VD> evidence$1,
scala.reflect.ClassTag<ED> evidence$2)
Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight. |
|
static
|
runUntilConvergence(Graph<VD,ED> graph,
double tol,
double resetProb,
scala.reflect.ClassTag<VD> evidence$5,
scala.reflect.ClassTag<ED> evidence$6)
Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight. |
|
static
|
runUntilConvergenceWithOptions(Graph<VD,ED> graph,
double tol,
double resetProb,
scala.Option<Object> srcId,
scala.reflect.ClassTag<VD> evidence$7,
scala.reflect.ClassTag<ED> evidence$8)
Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight. |
|
static
|
runWithOptions(Graph<VD,ED> graph,
int numIter,
double resetProb,
scala.Option<Object> srcId,
scala.reflect.ClassTag<VD> evidence$3,
scala.reflect.ClassTag<ED> evidence$4)
Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight. |
|
| Methods inherited from class Object |
|---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface org.apache.spark.Logging |
|---|
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning |
| Constructor Detail |
|---|
public PageRank()
| Method Detail |
|---|
public static <VD,ED> Graph<Object,Object> run(Graph<VD,ED> graph,
int numIter,
double resetProb,
scala.reflect.ClassTag<VD> evidence$1,
scala.reflect.ClassTag<ED> evidence$2)
graph - the graph on which to compute PageRanknumIter - the number of iterations of PageRank to runresetProb - the random reset probability (alpha)
evidence$1 - (undocumented)evidence$2 - (undocumented)
public static <VD,ED> Graph<Object,Object> runWithOptions(Graph<VD,ED> graph,
int numIter,
double resetProb,
scala.Option<Object> srcId,
scala.reflect.ClassTag<VD> evidence$3,
scala.reflect.ClassTag<ED> evidence$4)
graph - the graph on which to compute PageRanknumIter - the number of iterations of PageRank to runresetProb - the random reset probability (alpha)srcId - the source vertex for a Personalized Page Rank (optional)
evidence$3 - (undocumented)evidence$4 - (undocumented)
public static <VD,ED> Graph<Object,Object> runUntilConvergence(Graph<VD,ED> graph,
double tol,
double resetProb,
scala.reflect.ClassTag<VD> evidence$5,
scala.reflect.ClassTag<ED> evidence$6)
graph - the graph on which to compute PageRanktol - the tolerance allowed at convergence (smaller => more accurate).resetProb - the random reset probability (alpha)
evidence$5 - (undocumented)evidence$6 - (undocumented)
public static <VD,ED> Graph<Object,Object> runUntilConvergenceWithOptions(Graph<VD,ED> graph,
double tol,
double resetProb,
scala.Option<Object> srcId,
scala.reflect.ClassTag<VD> evidence$7,
scala.reflect.ClassTag<ED> evidence$8)
graph - the graph on which to compute PageRanktol - the tolerance allowed at convergence (smaller => more accurate).resetProb - the random reset probability (alpha)srcId - the source vertex for a Personalized Page Rank (optional)
evidence$7 - (undocumented)evidence$8 - (undocumented)
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||