|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
Objectorg.apache.spark.mllib.linalg.SparseMatrix
public class SparseMatrix
Column-major sparse matrix. The entry values are stored in Compressed Sparse Column (CSC) format. For example, the following matrix
1.0 0.0 4.0
0.0 3.0 5.0
2.0 0.0 6.0
is stored as values: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0],
rowIndices=[0, 2, 1, 0, 1, 2], colPointers=[0, 2, 3, 6].
param: numRows number of rows
param: numCols number of columns
param: colPtrs the index corresponding to the start of a new column (if not transposed)
param: rowIndices the row index of the entry (if not transposed). They must be in strictly
increasing order for each column
param: values nonzero matrix entries in column major (if not transposed)
param: isTransposed whether the matrix is transposed. If true, the matrix can be considered
Compressed Sparse Row (CSR) format, where colPtrs behaves as rowPtrs,
and rowIndices behave as colIndices, and values are stored in row major.
| Constructor Summary | |
|---|---|
SparseMatrix(int numRows,
int numCols,
int[] colPtrs,
int[] rowIndices,
double[] values)
Column-major sparse matrix. |
|
SparseMatrix(int numRows,
int numCols,
int[] colPtrs,
int[] rowIndices,
double[] values,
boolean isTransposed)
|
|
| Method Summary | |
|---|---|
double |
apply(int i,
int j)
Gets the (i, j)-th element. |
int[] |
colPtrs()
|
SparseMatrix |
copy()
Get a deep copy of the matrix. |
static SparseMatrix |
fromCOO(int numRows,
int numCols,
scala.collection.Iterable<scala.Tuple3<Object,Object,Object>> entries)
Generate a SparseMatrix from Coordinate List (COO) format. |
boolean |
isTransposed()
Flag that keeps track whether the matrix is transposed or not. |
int |
numCols()
Number of columns. |
int |
numRows()
Number of rows. |
int[] |
rowIndices()
|
static SparseMatrix |
spdiag(Vector vector)
Generate a diagonal matrix in SparseMatrix format from the supplied values. |
static SparseMatrix |
speye(int n)
Generate an Identity Matrix in SparseMatrix format. |
static SparseMatrix |
sprand(int numRows,
int numCols,
double density,
java.util.Random rng)
Generate a SparseMatrix consisting of i.i.d. |
static SparseMatrix |
sprandn(int numRows,
int numCols,
double density,
java.util.Random rng)
Generate a SparseMatrix consisting of i.i.d. |
DenseMatrix |
toDense()
Generate a DenseMatrix from the given SparseMatrix. |
SparseMatrix |
transpose()
Transpose the Matrix. |
double[] |
values()
|
| Methods inherited from class Object |
|---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface org.apache.spark.mllib.linalg.Matrix |
|---|
multiply, multiply, multiply, toArray, toString, toString |
| Constructor Detail |
|---|
public SparseMatrix(int numRows,
int numCols,
int[] colPtrs,
int[] rowIndices,
double[] values,
boolean isTransposed)
public SparseMatrix(int numRows,
int numCols,
int[] colPtrs,
int[] rowIndices,
double[] values)
1.0 0.0 4.0
0.0 3.0 5.0
2.0 0.0 6.0
is stored as values: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0],
rowIndices=[0, 2, 1, 0, 1, 2], colPointers=[0, 2, 3, 6].
numRows - number of rowsnumCols - number of columnscolPtrs - the index corresponding to the start of a new columnrowIndices - the row index of the entry. They must be in strictly increasing
order for each columnvalues - non-zero matrix entries in column major| Method Detail |
|---|
public static SparseMatrix fromCOO(int numRows,
int numCols,
scala.collection.Iterable<scala.Tuple3<Object,Object,Object>> entries)
SparseMatrix from Coordinate List (COO) format. Input must be an array of
(i, j, value) tuples. Entries that have duplicate values of i and j are
added together. Tuples where value is equal to zero will be omitted.
numRows - number of rows of the matrixnumCols - number of columns of the matrixentries - Array of (i, j, value) tuples
SparseMatrixpublic static SparseMatrix speye(int n)
SparseMatrix format.
n - number of rows and columns of the matrix
SparseMatrix with size n x n and values of ones on the diagonal
public static SparseMatrix sprand(int numRows,
int numCols,
double density,
java.util.Random rng)
SparseMatrix consisting of i.i.d. uniform random numbers. The number of non-zero
elements equal the ceiling of numRows x numCols x density
numRows - number of rows of the matrixnumCols - number of columns of the matrixdensity - the desired density for the matrixrng - a random number generator
SparseMatrix with size numRows x numCols and values in U(0, 1)
public static SparseMatrix sprandn(int numRows,
int numCols,
double density,
java.util.Random rng)
SparseMatrix consisting of i.i.d. gaussian random numbers.
numRows - number of rows of the matrixnumCols - number of columns of the matrixdensity - the desired density for the matrixrng - a random number generator
SparseMatrix with size numRows x numCols and values in N(0, 1)public static SparseMatrix spdiag(Vector vector)
SparseMatrix format from the supplied values.
vector - a Vector that will form the values on the diagonal of the matrix
SparseMatrix with size values.length x values.length and non-zero
values on the diagonalpublic int numRows()
Matrix
numRows in interface Matrixpublic int numCols()
Matrix
numCols in interface Matrixpublic int[] colPtrs()
public int[] rowIndices()
public double[] values()
public boolean isTransposed()
Matrix
isTransposed in interface Matrix
public double apply(int i,
int j)
Matrix
apply in interface Matrixpublic SparseMatrix copy()
Matrix
copy in interface Matrixpublic SparseMatrix transpose()
Matrix
transpose in interface Matrixpublic DenseMatrix toDense()
DenseMatrix from the given SparseMatrix. The new matrix will have isTransposed
set to false.
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||