public class MultilayerPerceptronClassifier extends Predictor<Vector,MultilayerPerceptronClassifier,MultilayerPerceptronClassificationModel>
| Constructor and Description |
|---|
MultilayerPerceptronClassifier() |
MultilayerPerceptronClassifier(java.lang.String uid) |
| Modifier and Type | Method and Description |
|---|---|
IntParam |
blockSize()
Block size for stacking input data in matrices to speed up the computation.
|
MultilayerPerceptronClassifier |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
int |
getBlockSize() |
int[] |
getLayers() |
IntArrayParam |
layers()
Layer sizes including input size and output size.
|
MultilayerPerceptronClassifier |
setBlockSize(int value) |
MultilayerPerceptronClassifier |
setLayers(int[] value) |
MultilayerPerceptronClassifier |
setMaxIter(int value)
Set the maximum number of iterations.
|
MultilayerPerceptronClassifier |
setSeed(long value)
Set the seed for weights initialization.
|
MultilayerPerceptronClassifier |
setTol(double value)
Set the convergence tolerance of iterations.
|
protected MultilayerPerceptronClassificationModel |
train(DataFrame dataset)
Train a model using the given dataset and parameters.
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
extractLabeledPoints, fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchematransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamstoStringinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic MultilayerPerceptronClassifier(java.lang.String uid)
public MultilayerPerceptronClassifier()
public java.lang.String uid()
Identifiableuid in interface Identifiablepublic MultilayerPerceptronClassifier setLayers(int[] value)
public MultilayerPerceptronClassifier setBlockSize(int value)
public MultilayerPerceptronClassifier setMaxIter(int value)
value - (undocumented)public MultilayerPerceptronClassifier setTol(double value)
value - (undocumented)public MultilayerPerceptronClassifier setSeed(long value)
value - (undocumented)public MultilayerPerceptronClassifier copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Predictor<Vector,MultilayerPerceptronClassifier,MultilayerPerceptronClassificationModel>extra - (undocumented)defaultCopy()protected MultilayerPerceptronClassificationModel train(DataFrame dataset)
fit() to avoid dealing with schema validation
and copying parameters into the model.
train in class Predictor<Vector,MultilayerPerceptronClassifier,MultilayerPerceptronClassificationModel>dataset - Training datasetpublic IntArrayParam layers()
public int[] getLayers()
public IntParam blockSize()
public int getBlockSize()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.