public class LinearRegressionModel extends RegressionModel<Vector,LinearRegressionModel> implements MLWritable
LinearRegression.| Modifier and Type | Method and Description |
|---|---|
Vector |
coefficients() |
LinearRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<java.lang.String> |
featuresCol()
Param for features column name.
|
java.lang.String |
getFeaturesCol() |
java.lang.String |
getLabelCol() |
java.lang.String |
getPredictionCol() |
boolean |
hasSummary()
Indicates whether a training summary exists for this model instance.
|
double |
intercept() |
Param<java.lang.String> |
labelCol()
Param for label column name.
|
static LinearRegressionModel |
load(java.lang.String path) |
int |
numFeatures()
Returns the number of features the model was trained on.
|
protected double |
predict(Vector features)
Predict label for the given features.
|
Param<java.lang.String> |
predictionCol()
Param for prediction column name.
|
static MLReader<LinearRegressionModel> |
read() |
LinearRegressionTrainingSummary |
summary()
Gets summary (e.g.
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
Vector |
weights() |
MLWriter |
write()
Returns a
MLWriter instance for this ML instance. |
featuresDataType, setFeaturesCol, setPredictionCol, transform, transformImpl, transformSchematransform, transform, transformtransformSchemaclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitsaveclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamstoStringinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static MLReader<LinearRegressionModel> read()
public static LinearRegressionModel load(java.lang.String path)
public java.lang.String uid()
Identifiableuid in interface Identifiablepublic Vector coefficients()
public double intercept()
public Vector weights()
public int numFeatures()
PredictionModelnumFeatures in class PredictionModel<Vector,LinearRegressionModel>public LinearRegressionTrainingSummary summary()
trainingSummary == None.public boolean hasSummary()
protected double predict(Vector features)
PredictionModeltransform() and output predictionCol.predict in class PredictionModel<Vector,LinearRegressionModel>features - (undocumented)public LinearRegressionModel copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Model<LinearRegressionModel>extra - (undocumented)defaultCopy()public MLWriter write()
MLWriter instance for this ML instance.
For LinearRegressionModel, this does NOT currently save the training summary.
An option to save summary may be added in the future.
This also does not save the parent currently.
write in interface MLWritablepublic StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.public Param<java.lang.String> labelCol()
public java.lang.String getLabelCol()
public Param<java.lang.String> featuresCol()
public java.lang.String getFeaturesCol()
public Param<java.lang.String> predictionCol()
public java.lang.String getPredictionCol()