public class NaiveBayes extends ProbabilisticClassifier<Vector,NaiveBayes,NaiveBayesModel> implements DefaultParamsWritable
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html)
which can handle finitely supported discrete data. For example, by converting documents into
TF-IDF vectors, it can be used for document classification. By making every vector a
binary (0/1) data, it can also be used as Bernoulli NB
(http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html).
The input feature values must be nonnegative.| Constructor and Description |
|---|
NaiveBayes() |
NaiveBayes(String uid) |
| Modifier and Type | Method and Description |
|---|---|
static Params |
clear(Param<?> param) |
NaiveBayes |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
featuresCol() |
Param<String> |
featuresCol()
Param for features column name.
|
static M |
fit(Dataset<?> dataset) |
static M |
fit(Dataset<?> dataset,
ParamMap paramMap) |
static scala.collection.Seq<M> |
fit(Dataset<?> dataset,
ParamMap[] paramMaps) |
static M |
fit(Dataset<?> dataset,
ParamPair<?> firstParamPair,
ParamPair<?>... otherParamPairs) |
static M |
fit(Dataset<?> dataset,
ParamPair<?> firstParamPair,
scala.collection.Seq<ParamPair<?>> otherParamPairs) |
static <T> scala.Option<T> |
get(Param<T> param) |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getFeaturesCol() |
String |
getFeaturesCol() |
static String |
getLabelCol() |
String |
getLabelCol() |
static String |
getModelType() |
String |
getModelType() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
String |
getPredictionCol() |
static String |
getProbabilityCol() |
static String |
getRawPredictionCol() |
String |
getRawPredictionCol() |
static double |
getSmoothing() |
double |
getSmoothing() |
static double[] |
getThresholds() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static Param<String> |
labelCol() |
Param<String> |
labelCol()
Param for label column name.
|
static NaiveBayes |
load(String path) |
static Param<String> |
modelType() |
Param<String> |
modelType()
The model type which is a string (case-sensitive).
|
static Param<?>[] |
params() |
static Param<String> |
predictionCol() |
Param<String> |
predictionCol()
Param for prediction column name.
|
static Param<String> |
probabilityCol() |
static Param<String> |
rawPredictionCol() |
Param<String> |
rawPredictionCol()
Param for raw prediction (a.k.a.
|
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
static Learner |
setFeaturesCol(String value) |
static Learner |
setLabelCol(String value) |
NaiveBayes |
setModelType(String value)
Set the model type using a string (case-sensitive).
|
static Learner |
setPredictionCol(String value) |
static E |
setProbabilityCol(String value) |
static E |
setRawPredictionCol(String value) |
NaiveBayes |
setSmoothing(double value)
Set the smoothing parameter.
|
static E |
setThresholds(double[] value) |
static DoubleParam |
smoothing() |
DoubleParam |
smoothing()
The smoothing parameter.
|
static DoubleArrayParam |
thresholds() |
static String |
toString() |
static StructType |
transformSchema(StructType schema) |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
static void |
validateParams() |
static MLWriter |
write() |
setProbabilityCol, setThresholdssetRawPredictionColfit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchemaequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitwritesaveclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParamstoStringpublic static NaiveBayes load(String path)
public static String toString()
public static Param<?>[] params()
public static void validateParams()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static M fit(Dataset<?> dataset, ParamPair<?> firstParamPair, scala.collection.Seq<ParamPair<?>> otherParamPairs)
public static M fit(Dataset<?> dataset, ParamPair<?> firstParamPair, ParamPair<?>... otherParamPairs)
public static final Param<String> labelCol()
public static final String getLabelCol()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static Learner setLabelCol(String value)
public static Learner setFeaturesCol(String value)
public static Learner setPredictionCol(String value)
public static M fit(Dataset<?> dataset)
public static StructType transformSchema(StructType schema)
public static final Param<String> rawPredictionCol()
public static final String getRawPredictionCol()
public static E setRawPredictionCol(String value)
public static final Param<String> probabilityCol()
public static final String getProbabilityCol()
public static final DoubleArrayParam thresholds()
public static double[] getThresholds()
public static E setProbabilityCol(String value)
public static E setThresholds(double[] value)
public static final DoubleParam smoothing()
public static final double getSmoothing()
public static final Param<String> modelType()
public static final String getModelType()
public static void save(String path)
throws java.io.IOException
java.io.IOExceptionpublic static MLWriter write()
public String uid()
Identifiableuid in interface Identifiablepublic NaiveBayes setSmoothing(double value)
value - (undocumented)public NaiveBayes setModelType(String value)
value - (undocumented)public NaiveBayes copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Predictor<Vector,NaiveBayes,NaiveBayesModel>extra - (undocumented)public DoubleParam smoothing()
public double getSmoothing()
public Param<String> modelType()
public String getModelType()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public Param<String> rawPredictionCol()
public String getRawPredictionCol()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.public Param<String> labelCol()
public String getLabelCol()
public Param<String> featuresCol()
public String getFeaturesCol()
public Param<String> predictionCol()
public String getPredictionCol()