public class IsotonicRegression extends Estimator<IsotonicRegressionModel> implements DefaultParamsWritable
Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
Uses IsotonicRegression.
| Constructor and Description |
|---|
IsotonicRegression() |
IsotonicRegression(String uid) |
| Modifier and Type | Method and Description |
|---|---|
static Params |
clear(Param<?> param) |
IsotonicRegression |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
RDD<scala.Tuple3<Object,Object,Object>> |
extractWeightedLabeledPoints(Dataset<?> dataset)
Extracts (label, feature, weight) from input dataset.
|
static IntParam |
featureIndex() |
IntParam |
featureIndex()
Param for the index of the feature if
featuresCol is a vector column (default: 0), no
effect otherwise. |
static Param<String> |
featuresCol() |
IsotonicRegressionModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static <T> scala.Option<T> |
get(Param<T> param) |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static int |
getFeatureIndex() |
int |
getFeatureIndex() |
static String |
getFeaturesCol() |
static boolean |
getIsotonic() |
boolean |
getIsotonic() |
static String |
getLabelCol() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
static String |
getWeightCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
boolean |
hasWeightCol()
Checks whether the input has weight column.
|
static boolean |
isDefined(Param<?> param) |
static BooleanParam |
isotonic() |
BooleanParam |
isotonic()
Param for whether the output sequence should be isotonic/increasing (true) or
antitonic/decreasing (false).
|
static boolean |
isSet(Param<?> param) |
static Param<String> |
labelCol() |
static IsotonicRegression |
load(String path) |
static Param<?>[] |
params() |
static Param<String> |
predictionCol() |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
IsotonicRegression |
setFeatureIndex(int value) |
IsotonicRegression |
setFeaturesCol(String value) |
IsotonicRegression |
setIsotonic(boolean value) |
IsotonicRegression |
setLabelCol(String value) |
IsotonicRegression |
setPredictionCol(String value) |
IsotonicRegression |
setWeightCol(String value) |
static String |
toString() |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting)
Validates and transforms input schema.
|
static Param<String> |
weightCol() |
static MLWriter |
write() |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringwritesavepublic IsotonicRegression(String uid)
public IsotonicRegression()
public static IsotonicRegression load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final Param<String> labelCol()
public static final String getLabelCol()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static final Param<String> weightCol()
public static final String getWeightCol()
public static final BooleanParam isotonic()
public static final boolean getIsotonic()
public static final IntParam featureIndex()
public static final int getFeatureIndex()
public static void save(String path)
throws java.io.IOException
java.io.IOExceptionpublic static MLWriter write()
public String uid()
Identifiableuid in interface Identifiablepublic IsotonicRegression setLabelCol(String value)
public IsotonicRegression setFeaturesCol(String value)
public IsotonicRegression setPredictionCol(String value)
public IsotonicRegression setIsotonic(boolean value)
public IsotonicRegression setWeightCol(String value)
public IsotonicRegression setFeatureIndex(int value)
public IsotonicRegression copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<IsotonicRegressionModel>extra - (undocumented)public IsotonicRegressionModel fit(Dataset<?> dataset)
Estimatorfit in class Estimator<IsotonicRegressionModel>dataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageCheck transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public BooleanParam isotonic()
public boolean getIsotonic()
public IntParam featureIndex()
featuresCol is a vector column (default: 0), no
effect otherwise.public int getFeatureIndex()
public boolean hasWeightCol()
public RDD<scala.Tuple3<Object,Object,Object>> extractWeightedLabeledPoints(Dataset<?> dataset)
dataset - (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting)
schema - input schemafitting - whether this is in fitting or prediction