public final class OneVsRestModel extends Model<OneVsRestModel> implements MLWritable
OneVsRest.
This stores the models resulting from training k binary classifiers: one for each class.
Each example is scored against all k models, and the model with the highest score
is picked to label the example.
param: labelMetadata Metadata of label column if it exists, or Nominal attribute representing the number of classes in training dataset otherwise. param: models The binary classification models for the reduction. The i-th model is produced by testing the i-th class (taking label 1) vs the rest (taking label 0).
| Modifier and Type | Method and Description |
|---|---|
static Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> |
classifier() |
Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> |
classifier()
param for the base binary classifier that we reduce multiclass classification into.
|
static Params |
clear(Param<?> param) |
OneVsRestModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
featuresCol() |
static <T> scala.Option<T> |
get(Param<T> param) |
static Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>> |
getClassifier() |
Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>> |
getClassifier() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getFeaturesCol() |
static String |
getLabelCol() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
static String |
getRawPredictionCol() |
static String |
getWeightCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
hasParent() |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static Param<String> |
labelCol() |
static OneVsRestModel |
load(String path) |
ClassificationModel[] |
models() |
int |
numClasses() |
int |
numFeatures() |
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static Param<String> |
predictionCol() |
static Param<String> |
rawPredictionCol() |
static MLReader<OneVsRestModel> |
read() |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
OneVsRestModel |
setFeaturesCol(String value) |
static M |
setParent(Estimator<M> parent) |
OneVsRestModel |
setPredictionCol(String value) |
OneVsRestModel |
setRawPredictionCol(String value) |
static String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
static Param<String> |
weightCol() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetRawPredictionCol, rawPredictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringgetWeightCol, weightColsaveinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static MLReader<OneVsRestModel> read()
public static OneVsRestModel load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final Param<String> labelCol()
public static final String getLabelCol()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static final Param<String> rawPredictionCol()
public static final String getRawPredictionCol()
public static final Param<String> weightCol()
public static final String getWeightCol()
public static Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> classifier()
public static Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>> getClassifier()
public static void save(String path)
throws java.io.IOException
java.io.IOExceptionpublic String uid()
Identifiableuid in interface Identifiablepublic ClassificationModel[] models()
public int numClasses()
public int numFeatures()
public OneVsRestModel setFeaturesCol(String value)
public OneVsRestModel setPredictionCol(String value)
public OneVsRestModel setRawPredictionCol(String value)
public StructType transformSchema(StructType schema)
PipelineStageCheck transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public OneVsRestModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<OneVsRestModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> classifier()
OneVsRest.public Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>> getClassifier()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)