public class CountVectorizerModel extends Model<CountVectorizerModel> implements CountVectorizerParams, MLWritable
| Constructor and Description |
|---|
CountVectorizerModel(String[] vocabulary) |
CountVectorizerModel(String uid,
String[] vocabulary) |
| Modifier and Type | Method and Description |
|---|---|
CountVectorizerModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static CountVectorizerModel |
load(String path) |
static MLReader<CountVectorizerModel> |
read() |
CountVectorizerModel |
setBinary(boolean value) |
CountVectorizerModel |
setInputCol(String value) |
CountVectorizerModel |
setMinTF(double value) |
CountVectorizerModel |
setOutputCol(String value) |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
String[] |
vocabulary() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitbinary, getBinary, getMaxDF, getMinDF, getMinTF, getVocabSize, maxDF, minDF, minTF, validateAndTransformSchema, vocabSizegetInputCol, inputColgetOutputCol, outputColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringsaveinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic CountVectorizerModel(String uid,
String[] vocabulary)
public CountVectorizerModel(String[] vocabulary)
public static MLReader<CountVectorizerModel> read()
public static CountVectorizerModel load(String path)
public String uid()
Identifiableuid in interface Identifiablepublic String[] vocabulary()
public CountVectorizerModel setInputCol(String value)
public CountVectorizerModel setOutputCol(String value)
public CountVectorizerModel setMinTF(double value)
public CountVectorizerModel setBinary(boolean value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageCheck transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public CountVectorizerModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<CountVectorizerModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritable