public final class RegressionEvaluator extends Evaluator implements HasPredictionCol, HasLabelCol, HasWeightCol, DefaultParamsWritable
| Constructor and Description |
|---|
RegressionEvaluator() |
RegressionEvaluator(String uid) |
| Modifier and Type | Method and Description |
|---|---|
RegressionEvaluator |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
evaluate(Dataset<?> dataset)
Evaluates model output and returns a scalar metric.
|
String |
getMetricName() |
RegressionMetrics |
getMetrics(Dataset<?> dataset)
Get a RegressionMetrics, which can be used to get regression
metrics such as rootMeanSquaredError, meanSquaredError, etc.
|
boolean |
getThroughOrigin() |
boolean |
isLargerBetter()
Indicates whether the metric returned by
evaluate should be maximized (true, default)
or minimized (false). |
Param<String> |
labelCol()
Param for label column name.
|
static RegressionEvaluator |
load(String path) |
Param<String> |
metricName()
Param for metric name in evaluation.
|
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<T> |
read() |
RegressionEvaluator |
setLabelCol(String value) |
RegressionEvaluator |
setMetricName(String value) |
RegressionEvaluator |
setPredictionCol(String value) |
RegressionEvaluator |
setThroughOrigin(boolean value) |
RegressionEvaluator |
setWeightCol(String value) |
BooleanParam |
throughOrigin()
param for whether the regression is through the origin.
|
String |
toString() |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
getPredictionColgetLabelColgetWeightColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnwritesavepublic RegressionEvaluator(String uid)
public RegressionEvaluator()
public static RegressionEvaluator load(String path)
public static MLReader<T> read()
public final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic String uid()
Identifiableuid in interface Identifiablepublic Param<String> metricName()
"rmse" (default): root mean squared error
- "mse": mean squared error
- "r2": R^2^ metric
- "mae": mean absolute error
- "var": explained variance
public String getMetricName()
public RegressionEvaluator setMetricName(String value)
public BooleanParam throughOrigin()
public boolean getThroughOrigin()
public RegressionEvaluator setThroughOrigin(boolean value)
public RegressionEvaluator setPredictionCol(String value)
public RegressionEvaluator setLabelCol(String value)
public RegressionEvaluator setWeightCol(String value)
public double evaluate(Dataset<?> dataset)
EvaluatorisLargerBetter specifies whether larger values are better.
public RegressionMetrics getMetrics(Dataset<?> dataset)
dataset - a dataset that contains labels/observations and predictions.public boolean isLargerBetter()
Evaluatorevaluate should be maximized (true, default)
or minimized (false).
A given evaluator may support multiple metrics which may be maximized or minimized.isLargerBetter in class Evaluatorpublic RegressionEvaluator copy(ParamMap extra)
ParamsdefaultCopy().public String toString()
toString in interface IdentifiabletoString in class Object