public class LinearSVCSummaryImpl extends Object implements LinearSVCSummary
param: predictions dataframe output by the model's transform method.
param: scoreCol field in "predictions" which gives the rawPrediction of each instance.
param: predictionCol field in "predictions" which gives the prediction for a data instance as a
double.
param: labelCol field in "predictions" which gives the true label of each instance.
param: weightCol field in "predictions" which gives the weight of each instance.
| Constructor and Description |
|---|
LinearSVCSummaryImpl(Dataset<Row> predictions,
String scoreCol,
String predictionCol,
String labelCol,
String weightCol) |
| Modifier and Type | Method and Description |
|---|---|
double |
areaUnderROC()
Computes the area under the receiver operating characteristic (ROC) curve.
|
Dataset<Row> |
fMeasureByThreshold()
Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0.
|
String |
labelCol()
Field in "predictions" which gives the true label of each instance (if available).
|
Dataset<Row> |
pr()
Returns the precision-recall curve, which is a Dataframe containing
two fields recall, precision with (0.0, 1.0) prepended to it.
|
Dataset<Row> |
precisionByThreshold()
Returns a dataframe with two fields (threshold, precision) curve.
|
String |
predictionCol()
Field in "predictions" which gives the prediction of each class.
|
Dataset<Row> |
predictions()
Dataframe output by the model's
transform method. |
Dataset<Row> |
recallByThreshold()
Returns a dataframe with two fields (threshold, recall) curve.
|
Dataset<Row> |
roc()
Returns the receiver operating characteristic (ROC) curve,
which is a Dataframe having two fields (FPR, TPR)
with (0.0, 0.0) prepended and (1.0, 1.0) appended to it.
|
String |
scoreCol()
Field in "predictions" which gives the probability or rawPrediction of each class as a
vector.
|
String |
weightCol()
Field in "predictions" which gives the weight of each instance.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitaccuracy, falsePositiveRateByLabel, fMeasureByLabel, fMeasureByLabel, labels, precisionByLabel, recallByLabel, truePositiveRateByLabel, weightedFalsePositiveRate, weightedFMeasure, weightedFMeasure, weightedPrecision, weightedRecall, weightedTruePositiveRatepublic double areaUnderROC()
BinaryClassificationSummaryareaUnderROC in interface BinaryClassificationSummarypublic Dataset<Row> fMeasureByThreshold()
BinaryClassificationSummaryfMeasureByThreshold in interface BinaryClassificationSummarypublic String labelCol()
ClassificationSummarylabelCol in interface ClassificationSummarypublic Dataset<Row> pr()
BinaryClassificationSummarypr in interface BinaryClassificationSummarypublic Dataset<Row> precisionByThreshold()
BinaryClassificationSummaryprecisionByThreshold in interface BinaryClassificationSummarypublic String predictionCol()
ClassificationSummarypredictionCol in interface ClassificationSummarypublic Dataset<Row> predictions()
ClassificationSummarytransform method.predictions in interface ClassificationSummarypublic Dataset<Row> recallByThreshold()
BinaryClassificationSummaryrecallByThreshold in interface BinaryClassificationSummarypublic Dataset<Row> roc()
BinaryClassificationSummaryroc in interface BinaryClassificationSummarypublic String scoreCol()
BinaryClassificationSummaryscoreCol in interface BinaryClassificationSummarypublic String weightCol()
ClassificationSummaryweightCol in interface ClassificationSummary