public final class VarianceThresholdSelector extends Estimator<VarianceThresholdSelectorModel> implements VarianceThresholdSelectorParams, DefaultParamsWritable
| Constructor and Description |
|---|
VarianceThresholdSelector() |
VarianceThresholdSelector(String uid) |
| Modifier and Type | Method and Description |
|---|---|
VarianceThresholdSelector |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
featuresCol()
Param for features column name.
|
VarianceThresholdSelectorModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static VarianceThresholdSelector |
load(String path) |
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<T> |
read() |
VarianceThresholdSelector |
setFeaturesCol(String value) |
VarianceThresholdSelector |
setOutputCol(String value) |
VarianceThresholdSelector |
setVarianceThreshold(double value) |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
DoubleParam |
varianceThreshold()
Param for variance threshold.
|
paramsequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetVarianceThresholdgetFeaturesColgetOutputColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringwritesave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic VarianceThresholdSelector(String uid)
public VarianceThresholdSelector()
public static VarianceThresholdSelector load(String path)
public static MLReader<T> read()
public final DoubleParam varianceThreshold()
VarianceThresholdSelectorParamsvarianceThreshold in interface VarianceThresholdSelectorParamspublic final Param<String> outputCol()
HasOutputColoutputCol in interface HasOutputColpublic final Param<String> featuresCol()
HasFeaturesColfeaturesCol in interface HasFeaturesColpublic String uid()
Identifiableuid in interface Identifiablepublic VarianceThresholdSelector setVarianceThreshold(double value)
public VarianceThresholdSelector setFeaturesCol(String value)
public VarianceThresholdSelector setOutputCol(String value)
public VarianceThresholdSelectorModel fit(Dataset<?> dataset)
Estimatorfit in class Estimator<VarianceThresholdSelectorModel>dataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public VarianceThresholdSelector copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<VarianceThresholdSelectorModel>extra - (undocumented)