public class AFTSurvivalRegressionModel extends RegressionModel<Vector,AFTSurvivalRegressionModel> implements AFTSurvivalRegressionParams, MLWritable
AFTSurvivalRegression.| Modifier and Type | Method and Description |
|---|---|
IntParam |
aggregationDepth()
Param for suggested depth for treeAggregate (>= 2).
|
Param<String> |
censorCol()
Param for censor column name.
|
Vector |
coefficients() |
AFTSurvivalRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
BooleanParam |
fitIntercept()
Param for whether to fit an intercept term.
|
double |
intercept() |
static AFTSurvivalRegressionModel |
load(String path) |
DoubleParam |
maxBlockSizeInMB()
Param for Maximum memory in MB for stacking input data into blocks.
|
IntParam |
maxIter()
Param for maximum number of iterations (>= 0).
|
int |
numFeatures()
Returns the number of features the model was trained on.
|
double |
predict(Vector features)
Predict label for the given features.
|
Vector |
predictQuantiles(Vector features) |
DoubleArrayParam |
quantileProbabilities()
Param for quantile probabilities array.
|
Param<String> |
quantilesCol()
Param for quantiles column name.
|
static MLReader<AFTSurvivalRegressionModel> |
read() |
double |
scale() |
AFTSurvivalRegressionModel |
setQuantileProbabilities(double[] value) |
AFTSurvivalRegressionModel |
setQuantilesCol(String value) |
DoubleParam |
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).
|
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms dataset by reading from
featuresCol, calling predict, and storing
the predictions as a new column predictionCol. |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
featuresCol, labelCol, predictionCol, setFeaturesCol, setPredictionColtransform, transform, transformparamsgetCensorCol, getQuantileProbabilities, getQuantilesCol, hasQuantilesCol, validateAndTransformSchemavalidateAndTransformSchemagetLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwngetMaxItergetFitInterceptgetAggregationDepthgetMaxBlockSizeInMB$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializesavepublic static MLReader<AFTSurvivalRegressionModel> read()
public static AFTSurvivalRegressionModel load(String path)
public final Param<String> censorCol()
AFTSurvivalRegressionParamscensorCol in interface AFTSurvivalRegressionParamspublic final DoubleArrayParam quantileProbabilities()
AFTSurvivalRegressionParamsquantileProbabilities in interface AFTSurvivalRegressionParamspublic final Param<String> quantilesCol()
AFTSurvivalRegressionParamsquantilesCol in interface AFTSurvivalRegressionParamspublic final DoubleParam maxBlockSizeInMB()
HasMaxBlockSizeInMBmaxBlockSizeInMB in interface HasMaxBlockSizeInMBpublic final IntParam aggregationDepth()
HasAggregationDepthaggregationDepth in interface HasAggregationDepthpublic final BooleanParam fitIntercept()
HasFitInterceptfitIntercept in interface HasFitInterceptpublic final DoubleParam tol()
HasTolpublic final IntParam maxIter()
HasMaxItermaxIter in interface HasMaxIterpublic String uid()
Identifiableuid in interface Identifiablepublic Vector coefficients()
public double intercept()
public double scale()
public int numFeatures()
PredictionModelnumFeatures in class PredictionModel<Vector,AFTSurvivalRegressionModel>public AFTSurvivalRegressionModel setQuantileProbabilities(double[] value)
public AFTSurvivalRegressionModel setQuantilesCol(String value)
public double predict(Vector features)
PredictionModeltransform() and output predictionCol.predict in class PredictionModel<Vector,AFTSurvivalRegressionModel>features - (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
PredictionModelfeaturesCol, calling predict, and storing
the predictions as a new column predictionCol.
transform in class PredictionModel<Vector,AFTSurvivalRegressionModel>dataset - input datasetpredictionCol of type Doublepublic StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PredictionModel<Vector,AFTSurvivalRegressionModel>schema - (undocumented)public AFTSurvivalRegressionModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<AFTSurvivalRegressionModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Object