public class BisectingKMeansModel extends Model<BisectingKMeansModel> implements BisectingKMeansParams, MLWritable, HasTrainingSummary<BisectingKMeansSummary>
param: parentModel a model trained by BisectingKMeans.
| Modifier and Type | Method and Description |
|---|---|
Vector[] |
clusterCenters() |
double |
computeCost(Dataset<?> dataset)
Deprecated.
This method is deprecated and will be removed in future versions. Use
ClusteringEvaluator instead. You can also get the cost on the training dataset in
the summary.
|
BisectingKMeansModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
distanceMeasure()
Param for The distance measure.
|
Param<String> |
featuresCol()
Param for features column name.
|
IntParam |
k()
The desired number of leaf clusters.
|
static BisectingKMeansModel |
load(String path) |
IntParam |
maxIter()
Param for maximum number of iterations (>= 0).
|
DoubleParam |
minDivisibleClusterSize()
The minimum number of points (if greater than or equal to 1.0) or the minimum proportion
of points (if less than 1.0) of a divisible cluster (default: 1.0).
|
int |
numFeatures() |
int |
predict(Vector features) |
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<BisectingKMeansModel> |
read() |
LongParam |
seed()
Param for random seed.
|
BisectingKMeansModel |
setFeaturesCol(String value) |
BisectingKMeansModel |
setPredictionCol(String value) |
BisectingKMeansSummary |
summary()
Gets summary of model on training set.
|
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformparamsgetK, getMinDivisibleClusterSize, validateAndTransformSchemagetMaxItergetFeaturesColgetPredictionColgetDistanceMeasuregetWeightColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnsavehasSummary, setSummary$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static MLReader<BisectingKMeansModel> read()
public static BisectingKMeansModel load(String path)
public final IntParam k()
BisectingKMeansParamsk in interface BisectingKMeansParamspublic final DoubleParam minDivisibleClusterSize()
BisectingKMeansParamsminDivisibleClusterSize in interface BisectingKMeansParamspublic final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic final Param<String> distanceMeasure()
HasDistanceMeasuredistanceMeasure in interface HasDistanceMeasurepublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic final LongParam seed()
HasSeedpublic final Param<String> featuresCol()
HasFeaturesColfeaturesCol in interface HasFeaturesColpublic final IntParam maxIter()
HasMaxItermaxIter in interface HasMaxIterpublic String uid()
Identifiableuid in interface Identifiablepublic int numFeatures()
public BisectingKMeansModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<BisectingKMeansModel>extra - (undocumented)public BisectingKMeansModel setFeaturesCol(String value)
public BisectingKMeansModel setPredictionCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public int predict(Vector features)
public Vector[] clusterCenters()
public double computeCost(Dataset<?> dataset)
dataset - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Objectpublic BisectingKMeansSummary summary()
hasSummary is false.summary in interface HasTrainingSummary<BisectingKMeansSummary>