public class TrainValidationSplitModel extends Model<TrainValidationSplitModel> implements TrainValidationSplitParams, MLWritable
param: uid Id. param: bestModel Estimator determined best model. param: validationMetrics Evaluated validation metrics.
| Modifier and Type | Class and Description |
|---|---|
static class |
TrainValidationSplitModel.TrainValidationSplitModelWriter
Writer for TrainValidationSplitModel.
|
| Modifier and Type | Method and Description |
|---|---|
Model<?> |
bestModel() |
TrainValidationSplitModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<Estimator<?>> |
estimator()
param for the estimator to be validated
|
Param<ParamMap[]> |
estimatorParamMaps()
param for estimator param maps
|
Param<Evaluator> |
evaluator()
param for the evaluator used to select hyper-parameters that maximize the validated metric
|
boolean |
hasSubModels() |
static TrainValidationSplitModel |
load(String path) |
static MLReader<TrainValidationSplitModel> |
read() |
LongParam |
seed()
Param for random seed.
|
Model<?>[] |
subModels() |
String |
toString() |
DoubleParam |
trainRatio()
Param for ratio between train and validation data.
|
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
double[] |
validationMetrics() |
TrainValidationSplitModel.TrainValidationSplitModelWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformparamsgetTrainRatiogetEstimator, getEstimatorParamMaps, getEvaluator, logTuningParams, transformSchemaImplclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnsave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static MLReader<TrainValidationSplitModel> read()
public static TrainValidationSplitModel load(String path)
public DoubleParam trainRatio()
TrainValidationSplitParamstrainRatio in interface TrainValidationSplitParamspublic Param<Estimator<?>> estimator()
ValidatorParamsestimator in interface ValidatorParamspublic Param<ParamMap[]> estimatorParamMaps()
ValidatorParamsestimatorParamMaps in interface ValidatorParamspublic Param<Evaluator> evaluator()
ValidatorParamsevaluator in interface ValidatorParamspublic final LongParam seed()
HasSeedpublic String uid()
Identifiableuid in interface Identifiablepublic Model<?> bestModel()
public double[] validationMetrics()
public Model<?>[] subModels()
IllegalArgumentException - if subModels are not available. To retrieve subModels,
make sure to set collectSubModels to true before fitting.public boolean hasSubModels()
public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public TrainValidationSplitModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<TrainValidationSplitModel>extra - (undocumented)public TrainValidationSplitModel.TrainValidationSplitModelWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Object