public interface PredictorParams extends Params, HasLabelCol, HasFeaturesCol, HasPredictionCol
| Modifier and Type | Method and Description |
|---|---|
RDD<org.apache.spark.ml.feature.Instance> |
extractInstances(Dataset<?> dataset)
Extract
labelCol, weightCol(if any) and featuresCol from the given dataset,
and put it in an RDD with strong types. |
RDD<org.apache.spark.ml.feature.Instance> |
extractInstances(Dataset<?> dataset,
scala.Function1<org.apache.spark.ml.feature.Instance,scala.runtime.BoxedUnit> validateInstance)
Extract
labelCol, weightCol(if any) and featuresCol from the given dataset,
and put it in an RDD with strong types. |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
getLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoString, uidRDD<org.apache.spark.ml.feature.Instance> extractInstances(Dataset<?> dataset)
labelCol, weightCol(if any) and featuresCol from the given dataset,
and put it in an RDD with strong types.dataset - (undocumented)RDD<org.apache.spark.ml.feature.Instance> extractInstances(Dataset<?> dataset, scala.Function1<org.apache.spark.ml.feature.Instance,scala.runtime.BoxedUnit> validateInstance)
labelCol, weightCol(if any) and featuresCol from the given dataset,
and put it in an RDD with strong types.
Validate the output instances with the given function.dataset - (undocumented)validateInstance - (undocumented)StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.