public class MultilayerPerceptronClassificationModel extends ProbabilisticClassificationModel<Vector,MultilayerPerceptronClassificationModel> implements MultilayerPerceptronParams, scala.Serializable, MLWritable, HasTrainingSummary<MultilayerPerceptronClassificationTrainingSummary>
param: uid uid param: weights the weights of layers
| Modifier and Type | Method and Description |
|---|---|
IntParam |
blockSize()
Param for block size for stacking input data in matrices.
|
MultilayerPerceptronClassificationModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
MultilayerPerceptronClassificationSummary |
evaluate(Dataset<?> dataset)
Evaluates the model on a test dataset.
|
Param<Vector> |
initialWeights()
The initial weights of the model.
|
IntArrayParam |
layers()
Layer sizes including input size and output size.
|
static MultilayerPerceptronClassificationModel |
load(String path) |
IntParam |
maxIter()
Param for maximum number of iterations (>= 0).
|
int |
numClasses()
Number of classes (values which the label can take).
|
int |
numFeatures()
Returns the number of features the model was trained on.
|
double |
predict(Vector features)
Predict label for the given features.
|
Vector |
predictRaw(Vector features)
Raw prediction for each possible label.
|
static MLReader<MultilayerPerceptronClassificationModel> |
read() |
LongParam |
seed()
Param for random seed.
|
Param<String> |
solver()
The solver algorithm for optimization.
|
DoubleParam |
stepSize()
Param for Step size to be used for each iteration of optimization (> 0).
|
MultilayerPerceptronClassificationTrainingSummary |
summary()
Gets summary of model on training set.
|
DoubleParam |
tol()
Param for the convergence tolerance for iterative algorithms (>= 0).
|
String |
toString() |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Vector |
weights() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
normalizeToProbabilitiesInPlace, predictProbability, probabilityCol, setProbabilityCol, setThresholds, thresholds, transform, transformSchemarawPredictionCol, setRawPredictionCol, transformImplfeaturesCol, labelCol, predictionCol, setFeaturesCol, setPredictionColtransform, transform, transformparamsgetInitialWeights, getLayersvalidateAndTransformSchemaextractInstancesextractInstances, extractInstancesgetLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwngetRawPredictionCol, rawPredictionColgetProbabilityCol, probabilityColgetThresholds, thresholdsgetMaxItergetStepSizegetBlockSizesavehasSummary, setSummary$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static MLReader<MultilayerPerceptronClassificationModel> read()
public static MultilayerPerceptronClassificationModel load(String path)
public final IntArrayParam layers()
MultilayerPerceptronParamslayers in interface MultilayerPerceptronParamspublic final Param<String> solver()
MultilayerPerceptronParamssolver in interface MultilayerPerceptronParamssolver in interface HasSolverpublic final Param<Vector> initialWeights()
MultilayerPerceptronParamsinitialWeights in interface MultilayerPerceptronParamspublic final IntParam blockSize()
HasBlockSizeblockSize in interface HasBlockSizepublic DoubleParam stepSize()
HasStepSizestepSize in interface HasStepSizepublic final DoubleParam tol()
HasTolpublic final IntParam maxIter()
HasMaxItermaxIter in interface HasMaxIterpublic final LongParam seed()
HasSeedpublic String uid()
Identifiableuid in interface Identifiablepublic Vector weights()
public int numFeatures()
PredictionModelnumFeatures in class PredictionModel<Vector,MultilayerPerceptronClassificationModel>public MultilayerPerceptronClassificationTrainingSummary summary()
hasSummary is false.summary in interface HasTrainingSummary<MultilayerPerceptronClassificationTrainingSummary>public MultilayerPerceptronClassificationSummary evaluate(Dataset<?> dataset)
dataset - Test dataset to evaluate model on.public double predict(Vector features)
transform() and output predictionCol.predict in class ClassificationModel<Vector,MultilayerPerceptronClassificationModel>features - (undocumented)public MultilayerPerceptronClassificationModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<MultilayerPerceptronClassificationModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic Vector predictRaw(Vector features)
ClassificationModeltransform() and output rawPredictionCol.
predictRaw in class ClassificationModel<Vector,MultilayerPerceptronClassificationModel>features - (undocumented)public int numClasses()
ClassificationModelnumClasses in class ClassificationModel<Vector,MultilayerPerceptronClassificationModel>public String toString()
toString in interface IdentifiabletoString in class Object