HashingTF¶
- 
class pyspark.ml.feature.HashingTF(*, numFeatures=262144, binary=False, inputCol=None, outputCol=None)[source]¶
- Maps a sequence of terms to their term frequencies using the hashing trick. Currently we use Austin Appleby’s MurmurHash 3 algorithm (MurmurHash3_x86_32) to calculate the hash code value for the term object. Since a simple modulo is used to transform the hash function to a column index, it is advisable to use a power of two as the numFeatures parameter; otherwise the features will not be mapped evenly to the columns. - New in version 1.3.0. - Examples - >>> df = spark.createDataFrame([(["a", "b", "c"],)], ["words"]) >>> hashingTF = HashingTF(inputCol="words", outputCol="features") >>> hashingTF.setNumFeatures(10) HashingTF... >>> hashingTF.transform(df).head().features SparseVector(10, {5: 1.0, 7: 1.0, 8: 1.0}) >>> hashingTF.setParams(outputCol="freqs").transform(df).head().freqs SparseVector(10, {5: 1.0, 7: 1.0, 8: 1.0}) >>> params = {hashingTF.numFeatures: 5, hashingTF.outputCol: "vector"} >>> hashingTF.transform(df, params).head().vector SparseVector(5, {0: 1.0, 2: 1.0, 3: 1.0}) >>> hashingTFPath = temp_path + "/hashing-tf" >>> hashingTF.save(hashingTFPath) >>> loadedHashingTF = HashingTF.load(hashingTFPath) >>> loadedHashingTF.getNumFeatures() == hashingTF.getNumFeatures() True >>> loadedHashingTF.transform(df).take(1) == hashingTF.transform(df).take(1) True >>> hashingTF.indexOf("b") 5 - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of binary or its default value. - Gets the value of inputCol or its default value. - Gets the value of numFeatures or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - indexOf(term)- Returns the index of the input term. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setBinary(value)- Sets the value of - binary.- setInputCol(value)- Sets the value of - inputCol.- setNumFeatures(value)- Sets the value of - numFeatures.- setOutputCol(value)- Sets the value of - outputCol.- setParams(self, \*[, numFeatures, binary, …])- Sets params for this HashingTF. - transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param)¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra=None)¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param)¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams()¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra=None)¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
getInputCol()¶
- Gets the value of inputCol or its default value. 
 - 
getNumFeatures()¶
- Gets the value of numFeatures or its default value. 
 - 
getOrDefault(param)¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getOutputCol()¶
- Gets the value of outputCol or its default value. 
 - 
getParam(paramName)¶
- Gets a param by its name. 
 - 
hasDefault(param)¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName)¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param)¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param)¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path)¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read()¶
- Returns an MLReader instance for this class. 
 - 
save(path)¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param, value)¶
- Sets a parameter in the embedded param map. 
 - 
setNumFeatures(value)[source]¶
- Sets the value of - numFeatures.
 - 
setParams(self, \*, numFeatures=1 << 18, binary=False, inputCol=None, outputCol=None)[source]¶
- Sets params for this HashingTF. - New in version 1.3.0. 
 - 
transform(dataset, params=None)¶
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - 
write()¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
binary= Param(parent='undefined', name='binary', doc='If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. Default False.')¶
 - 
inputCol= Param(parent='undefined', name='inputCol', doc='input column name.')¶
 - 
numFeatures= Param(parent='undefined', name='numFeatures', doc='Number of features. Should be greater than 0.')¶
 - 
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 
-