Word2Vec¶
- 
class pyspark.ml.feature.Word2Vec(*, vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, seed=None, inputCol=None, outputCol=None, windowSize=5, maxSentenceLength=1000)[source]¶
- Word2Vec trains a model of Map(String, Vector), i.e. transforms a word into a code for further natural language processing or machine learning process. - New in version 1.4.0. - Examples - >>> sent = ("a b " * 100 + "a c " * 10).split(" ") >>> doc = spark.createDataFrame([(sent,), (sent,)], ["sentence"]) >>> word2Vec = Word2Vec(vectorSize=5, seed=42, inputCol="sentence", outputCol="model") >>> word2Vec.setMaxIter(10) Word2Vec... >>> word2Vec.getMaxIter() 10 >>> word2Vec.clear(word2Vec.maxIter) >>> model = word2Vec.fit(doc) >>> model.getMinCount() 5 >>> model.setInputCol("sentence") Word2VecModel... >>> model.getVectors().show() +----+--------------------+ |word| vector| +----+--------------------+ | a|[0.0951... | b|[-1.202... | c|[0.3015... +----+--------------------+ ... >>> model.findSynonymsArray("a", 2) [('b', 0.015859...), ('c', -0.568079...)] >>> from pyspark.sql.functions import format_number as fmt >>> model.findSynonyms("a", 2).select("word", fmt("similarity", 5).alias("similarity")).show() +----+----------+ |word|similarity| +----+----------+ | b| 0.01586| | c| -0.56808| +----+----------+ ... >>> model.transform(doc).head().model DenseVector([-0.4833, 0.1855, -0.273, -0.0509, -0.4769]) >>> word2vecPath = temp_path + "/word2vec" >>> word2Vec.save(word2vecPath) >>> loadedWord2Vec = Word2Vec.load(word2vecPath) >>> loadedWord2Vec.getVectorSize() == word2Vec.getVectorSize() True >>> loadedWord2Vec.getNumPartitions() == word2Vec.getNumPartitions() True >>> loadedWord2Vec.getMinCount() == word2Vec.getMinCount() True >>> modelPath = temp_path + "/word2vec-model" >>> model.save(modelPath) >>> loadedModel = Word2VecModel.load(modelPath) >>> loadedModel.getVectors().first().word == model.getVectors().first().word True >>> loadedModel.getVectors().first().vector == model.getVectors().first().vector True >>> loadedModel.transform(doc).take(1) == model.transform(doc).take(1) True - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of inputCol or its default value. - Gets the value of maxIter or its default value. - Gets the value of maxSentenceLength or its default value. - Gets the value of minCount or its default value. - Gets the value of numPartitions or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - getSeed()- Gets the value of seed or its default value. - Gets the value of stepSize or its default value. - Gets the value of vectorSize or its default value. - Gets the value of windowSize or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setInputCol(value)- Sets the value of - inputCol.- setMaxIter(value)- Sets the value of - maxIter.- setMaxSentenceLength(value)- Sets the value of - maxSentenceLength.- setMinCount(value)- Sets the value of - minCount.- setNumPartitions(value)- Sets the value of - numPartitions.- setOutputCol(value)- Sets the value of - outputCol.- setParams(self, \*[, minCount, …])- Sets params for this Word2Vec. - setSeed(value)- Sets the value of - seed.- setStepSize(value)- Sets the value of - stepSize.- setVectorSize(value)- Sets the value of - vectorSize.- setWindowSize(value)- Sets the value of - windowSize.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param)¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra=None)¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param)¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams()¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra=None)¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset, params=None)¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset, paramMaps)¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getInputCol()¶
- Gets the value of inputCol or its default value. 
 - 
getMaxIter()¶
- Gets the value of maxIter or its default value. 
 - 
getMaxSentenceLength()¶
- Gets the value of maxSentenceLength or its default value. - New in version 2.0.0. 
 - 
getMinCount()¶
- Gets the value of minCount or its default value. - New in version 1.4.0. 
 - 
getNumPartitions()¶
- Gets the value of numPartitions or its default value. - New in version 1.4.0. 
 - 
getOrDefault(param)¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getOutputCol()¶
- Gets the value of outputCol or its default value. 
 - 
getParam(paramName)¶
- Gets a param by its name. 
 - 
getSeed()¶
- Gets the value of seed or its default value. 
 - 
getStepSize()¶
- Gets the value of stepSize or its default value. 
 - 
getVectorSize()¶
- Gets the value of vectorSize or its default value. - New in version 1.4.0. 
 - 
getWindowSize()¶
- Gets the value of windowSize or its default value. - New in version 2.0.0. 
 - 
hasDefault(param)¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName)¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param)¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param)¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path)¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read()¶
- Returns an MLReader instance for this class. 
 - 
save(path)¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param, value)¶
- Sets a parameter in the embedded param map. 
 - 
setMaxSentenceLength(value)[source]¶
- Sets the value of - maxSentenceLength.- New in version 2.0.0. 
 - 
setNumPartitions(value)[source]¶
- Sets the value of - numPartitions.- New in version 1.4.0. 
 - 
setParams(self, \*, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, seed=None, inputCol=None, outputCol=None, windowSize=5, maxSentenceLength=1000)[source]¶
- Sets params for this Word2Vec. - New in version 1.4.0. 
 - 
setVectorSize(value)[source]¶
- Sets the value of - vectorSize.- New in version 1.4.0. 
 - 
setWindowSize(value)[source]¶
- Sets the value of - windowSize.- New in version 2.0.0. 
 - 
write()¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
inputCol= Param(parent='undefined', name='inputCol', doc='input column name.')¶
 - 
maxIter= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
 - 
maxSentenceLength= Param(parent='undefined', name='maxSentenceLength', doc='Maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks up to the size.')¶
 - 
minCount= Param(parent='undefined', name='minCount', doc="the minimum number of times a token must appear to be included in the word2vec model's vocabulary")¶
 - 
numPartitions= Param(parent='undefined', name='numPartitions', doc='number of partitions for sentences of words')¶
 - 
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
seed= Param(parent='undefined', name='seed', doc='random seed.')¶
 - 
stepSize= Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')¶
 - 
vectorSize= Param(parent='undefined', name='vectorSize', doc='the dimension of codes after transforming from words')¶
 - 
windowSize= Param(parent='undefined', name='windowSize', doc='the window size (context words from [-window, window]). Default value is 5')¶
 
-