AFTSurvivalRegression¶
- 
class pyspark.ml.regression.AFTSurvivalRegression(*, featuresCol='features', labelCol='label', predictionCol='prediction', fitIntercept=True, maxIter=100, tol=1e-06, censorCol='censor', quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2, maxBlockSizeInMB=0.0)[source]¶
- Accelerated Failure Time (AFT) Model Survival Regression - Fit a parametric AFT survival regression model based on the Weibull distribution of the survival time. - Notes - For more information see Wikipedia page on AFT Model - Examples - >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0), 1.0), ... (1e-40, Vectors.sparse(1, [], []), 0.0)], ["label", "features", "censor"]) >>> aftsr = AFTSurvivalRegression() >>> aftsr.setMaxIter(10) AFTSurvivalRegression... >>> aftsr.getMaxIter() 10 >>> aftsr.clear(aftsr.maxIter) >>> model = aftsr.fit(df) >>> model.getMaxBlockSizeInMB() 0.0 >>> model.setFeaturesCol("features") AFTSurvivalRegressionModel... >>> model.predict(Vectors.dense(6.3)) 1.0 >>> model.predictQuantiles(Vectors.dense(6.3)) DenseVector([0.0101, 0.0513, 0.1054, 0.2877, 0.6931, 1.3863, 2.3026, 2.9957, 4.6052]) >>> model.transform(df).show() +-------+---------+------+----------+ | label| features|censor|prediction| +-------+---------+------+----------+ | 1.0| [1.0]| 1.0| 1.0| |1.0E-40|(1,[],[])| 0.0| 1.0| +-------+---------+------+----------+ ... >>> aftsr_path = temp_path + "/aftsr" >>> aftsr.save(aftsr_path) >>> aftsr2 = AFTSurvivalRegression.load(aftsr_path) >>> aftsr2.getMaxIter() 100 >>> model_path = temp_path + "/aftsr_model" >>> model.save(model_path) >>> model2 = AFTSurvivalRegressionModel.load(model_path) >>> model.coefficients == model2.coefficients True >>> model.intercept == model2.intercept True >>> model.scale == model2.scale True >>> model.transform(df).take(1) == model2.transform(df).take(1) True - New in version 1.6.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - Gets the value of aggregationDepth or its default value. - Gets the value of censorCol or its default value. - Gets the value of featuresCol or its default value. - Gets the value of fitIntercept or its default value. - Gets the value of labelCol or its default value. - Gets the value of maxBlockSizeInMB or its default value. - Gets the value of maxIter or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of quantileProbabilities or its default value. - Gets the value of quantilesCol or its default value. - getTol()- Gets the value of tol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setAggregationDepth(value)- Sets the value of - aggregationDepth.- setCensorCol(value)- Sets the value of - censorCol.- setFeaturesCol(value)- Sets the value of - featuresCol.- setFitIntercept(value)- Sets the value of - fitIntercept.- setLabelCol(value)- Sets the value of - labelCol.- setMaxBlockSizeInMB(value)- Sets the value of - maxBlockSizeInMB.- setMaxIter(value)- Sets the value of - maxIter.- setParams(*[, featuresCol, labelCol, …])- setParams(self, *, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, fitIntercept=True, maxIter=100, tol=1E-6, censorCol=”censor”, quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2, maxBlockSizeInMB=0.0): - setPredictionCol(value)- Sets the value of - predictionCol.- setQuantileProbabilities(value)- Sets the value of - quantileProbabilities.- setQuantilesCol(value)- Sets the value of - quantilesCol.- setTol(value)- Sets the value of - tol.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param)¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra=None)¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param)¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams()¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra=None)¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset, params=None)¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- Transformeror a list of- Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset, paramMaps)¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getAggregationDepth()¶
- Gets the value of aggregationDepth or its default value. 
 - 
getCensorCol()¶
- Gets the value of censorCol or its default value. - New in version 1.6.0. 
 - 
getFeaturesCol()¶
- Gets the value of featuresCol or its default value. 
 - 
getFitIntercept()¶
- Gets the value of fitIntercept or its default value. 
 - 
getLabelCol()¶
- Gets the value of labelCol or its default value. 
 - 
getMaxBlockSizeInMB()¶
- Gets the value of maxBlockSizeInMB or its default value. 
 - 
getMaxIter()¶
- Gets the value of maxIter or its default value. 
 - 
getOrDefault(param)¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName)¶
- Gets a param by its name. 
 - 
getPredictionCol()¶
- Gets the value of predictionCol or its default value. 
 - 
getQuantileProbabilities()¶
- Gets the value of quantileProbabilities or its default value. - New in version 1.6.0. 
 - 
getQuantilesCol()¶
- Gets the value of quantilesCol or its default value. - New in version 1.6.0. 
 - 
getTol()¶
- Gets the value of tol or its default value. 
 - 
hasDefault(param)¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName)¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param)¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param)¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path)¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read()¶
- Returns an MLReader instance for this class. 
 - 
save(path)¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param, value)¶
- Sets a parameter in the embedded param map. 
 - 
setAggregationDepth(value)[source]¶
- Sets the value of - aggregationDepth.- New in version 2.1.0. 
 - 
setFeaturesCol(value)¶
- Sets the value of - featuresCol.- New in version 3.0.0. 
 - 
setFitIntercept(value)[source]¶
- Sets the value of - fitIntercept.- New in version 1.6.0. 
 - 
setMaxBlockSizeInMB(value)[source]¶
- Sets the value of - maxBlockSizeInMB.- New in version 3.1.0. 
 - 
setParams(*, featuresCol='features', labelCol='label', predictionCol='prediction', fitIntercept=True, maxIter=100, tol=1e-06, censorCol='censor', quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2, maxBlockSizeInMB=0.0)[source]¶
- setParams(self, *, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, fitIntercept=True, maxIter=100, tol=1E-6, censorCol=”censor”, quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2, maxBlockSizeInMB=0.0): - New in version 1.6.0. 
 - 
setPredictionCol(value)¶
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - 
setQuantileProbabilities(value)[source]¶
- Sets the value of - quantileProbabilities.- New in version 1.6.0. 
 - 
setQuantilesCol(value)[source]¶
- Sets the value of - quantilesCol.- New in version 1.6.0. 
 - 
write()¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
aggregationDepth= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
 - 
censorCol= Param(parent='undefined', name='censorCol', doc='censor column name. The value of this column could be 0 or 1. If the value is 1, it means the event has occurred i.e. uncensored; otherwise censored.')¶
 - 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
 - 
fitIntercept= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
 - 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶
 - 
maxBlockSizeInMB= Param(parent='undefined', name='maxBlockSizeInMB', doc='maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0.')¶
 - 
maxIter= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
 - 
quantileProbabilities= Param(parent='undefined', name='quantileProbabilities', doc='quantile probabilities array. Values of the quantile probabilities array should be in the range (0, 1) and the array should be non-empty.')¶
 - 
quantilesCol= Param(parent='undefined', name='quantilesCol', doc='quantiles column name. This column will output quantiles of corresponding quantileProbabilities if it is set.')¶
 - 
tol= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
 
-